
CMG-Italia & EuroCMG 2002

1

UNIX I/O Performance Measurement
Methodologies Applied To Old And New Storage

Technologies

Mark Cohen Austrowiek – Demand Technology Software
Pierluigi Grassi – EMC Computer Systems

ABSTRACT

In this document we’ll provide a general overview of UNIX I/O performance and their operating
system tools that measure internal server disks and how these tools can be applied to modern
external storage arrays and eventually a SAN environment. In particular we’ll describe the current
storage architecture by means of integrating native system tools and storage vendor software in
order to obtain information as performance measurements, physical disk mapping and more. In
addition we’ll provide some considerations when planning and configuring the I/O systems in order
to improve performance.

CMG-Italia & EuroCMG 2002

2

INDEX

1 I/O PERFORMANCE OVERVIEW ...3

2 HARDWARE CONFIGURATION...4

3 VOLUME GROUP AND FILESYSTEM CONCEPTS...6

3.1 PHYSICAL VOLUMES..6
3.2 VOLUME GROUPS ...6
3.3 LOGICAL VOLUMES..6
3.4 LIMITATIONS FOR LOGICAL STORAGE MANAGEMENT ..6
3.5 FILE SYSTEMS OVERVIEW ..7
3.6 PLACEMENT AND REORGANIZING A LOGICAL VOLUME, VOLUME GROUP OR FILEYSTEM..............7

4 STORAGE DISK ARRAY ...9

5 NATIVE UNIX UTILITIES TO ANALYSE THE I/O SYSTEM ...12

5.1 FILEMON STATISTICS..16

6 ROTS - RULES OF THUMB...17

6.1 CHANNEL BANDWITH AND BLOCKSIZE ..17
6.2 ACCESS DENSITY..17

7 STORAGE VENDOR UTILITIES..18

7.1 CONTROL CENTER OPEN EDITION (CCOE) ...19
7.2 CC SYMMETRIX MANAGER ...19
7.3 CC WORKLOAD ANALYZER ..19
7.4 CC OPTIMIZER ..19

8 CONCLUSIONS ...20

9 APPENDIX A – EMC UTILITIES’ ARCHITECTURE AND GRAPHS ..21

9.1 CONTROL CENTER OPEN EDITION ARCHITECTURE ...21
9.2 SYMMETRIX MANAGER UTILIZATION EXAMPLE ...21
9.3 WORKLOAD ANALYZER..26

CMG-Italia & EuroCMG 2002

3

1 I/O Performance Overview

Improving system I/O performance has always been a difficult task for performance analysts. The steps
needed to analyse I/O performance are:

• Verify that other resources as memory, CPU or network activities are not the real cause of the I/O
performance degradation.

• Controlling service levels as transactions per second, disk busy and disk response times (not provided by
most UNIX platforms) help in locating I/O performance problems.

• Modifying operating system parameters to improve read and write ahead activity, page stealing policy,
I/O pacing and logical volume implementation as striping, partition sizing , mirroring and data
positioning have major effects on I/O performance.

• Understanding how the application is accessing data (sequential or random access, reads vs writes) and
the block size is essential in order to choose the correct raid..

In addition, nowadays the logical and physical path concepts have been extended due to the fact that many
systems access the same storage controllers, sharing the same physical path through switches (as in the
mainframes environment where different systems share the same physical paths from ESCON DIRECTORS
to the Storage Control Unit).

Due to these new technologies I/O performance in the Open environment has become more complex to
understand and questions like where it is done, how is the I/O performing, where is the I/O bottleneck and
what kind of storage configuration would be best for my I/O are becoming more difficult to answer.

In a simple system where we find a simple bunch of disks there is a direct correspondence between the
physical disk shown by the native UNIX utilities and the physical disk installed on the system. We can
easily understand the throughput and the amount of time the disk was busy writing and reading data.

When using Storage Disk Array the correspondence between the logical entries found in the operating
system and the internal physical disks are hidden. A logical disk can be associated with a different amounts
of space and located on multiple physical drive locations in the storage control unit . This can be done on
behalf of the storage administrator through logical volume manager (logical volumes), but more simply can
be achieved configuring the volumes using the microcode installed in the storage controller (metavolumes)
with less operating system overhead.

To get the real physical disk throughput activity and physical disk busy we would have to map all the logical
entries to the physical disks and sum the throughput and busy for the physical disks associated with each
logical entry for each system. This is quite a cumbersome procedure for a performance analyst, unless
he/she has an integrated software interface with the storage physical configuration.
Using a software interface, like ECC from EMC or STORWATCH specialist from IBM, allows you to map
the logical volumes, as they are presented to the operating system (for example an AIX hdisk0), to the
physical disks they reside on. Having this information, makes it much easier to understand the locations of
bottlenecks and how the I/O workload is balanced for the backend. Depending on the storage architecture
the software interface may vary , but in any case the objective is to offer the user a graphical view of the
internal storage array.

An EMC component also has the ability to discover and display the relationship between databases,
filesystem, hosts and storage, so from a console management station you can determine that your Oracle
tablespace is located on a particular filesystem, host logical volume, and array.
In this document we tried to provide a brief overview of the hardware configuration components and
software available to analyse these components. Understanding the logical to physical disk and path
mapping, the cache architecture, the raid level serves as the basis in understanding the system I/O potential.

CMG-Italia & EuroCMG 2002

4

2 Hardware Configuration

Acquiring a good knowledge of the characteristics of all the hardware components in the I/O physical path
is very helpful in order to understand the theoretical I/O throughput capacity. The real throughput also
depends on the operating system options, system and application software and storage disk array microcode.

Looking at the CPU, a 486 system has the ability to produce 45 MB/sec throughput while a Pentium
based system can provide 132 MB/sec throughput. A PCI bus (64 bit peripheral component interface
33MHZ/66MHZ) can range from 237 to 532 MB/sec. IBM states that one mainframe MIPS is equivalent to
a 60 pentium mhz bus.

The positioning of the bus slots is also a very important factor when installing adapters. There are
specifications in the hardware configuration manual which recommend what adapters should be positioned
in each slot. Adapters have different weights (low, middle, high) and can influence the adapters performance
if they do not respect the installation recommendations

Channel adapters or HBA (host bus adaprter) are another important element in the I/O chain. There are
different types of them and historically channel bandwidth has always been improved over the years:
examples are NarrowSCSI 10 MB/s, FastSCSI (20MB/s), UltraSCSI (40MB/s), UltraSCSI 2 (80 MB/s), FC
– fiber channel (100/200 MB/s). Throughput is strongly dependent on I/O blocksize and protocol overhead,
so, for example, we could achieve the same performance with UltraSCSI and fiber channel when the block
size is less than 2 K
Whether the performance is measured by response time, I/O per sec., MB per sec., there is no one number
categorizing performance; it has to be correlated with the I/O size.
A significant improvement in performance has been achieved in the last few years through the introduction
of I/O path balancing and path failover in the UNIX and Windows environment , a function available to
Mainframe since the late 80's.

Historically the UNIX and Windows operating systems have one channel path to a specific volume, so even
if different HBA’s are mounted on the server each of them will access different disks. It's very common that
the workload is not balanced across them and it's possible to loose access to a group of disks in case of an
HBA failure, unless there is a cluster implemented. (some UNIX OS can partially manage the HBA failure).

With the introduction of a software layer between the kernel and the application layer (something like the
mainframe channel subsystem) it's now possible to have a server with multiple HBAs accessing the same
group of hdisks inside the Storage Disk Array. In case of a path failure, I/Os are redirected to the surviving
paths.
I/O balancing can be done using different algorithms:

• Round Robin (rr)
Paths assigned in rotation regardless of other factors.

• Least I/Os (li)
Select the path with the least number of pending I/Os regardless of I/O size.

• Least Blocks (lb)
Select the path with the least number of blocks pending regardless of the number of blocks
per I/O.

• Request (re)
Failover is in effect, but load balancing is not.

• No redirect (nr)
Neither load balancing nor failover is in effect..

The EMC Powerpath can use all the above algorithms. It defaults to a Symmetrix Optimization algorithm
which permits I/O request balanced across paths based on composition of channel speeds, number and size

CMG-Italia & EuroCMG 2002

5

of read requests, write requests, sequential activity, and tunable priority value. Symmetrix Optimization
(default) is the recommended algorithm as tests have shown that this option always out performs other
options.

Disk drives are another key element when evaluating performance. With the introduction of Storage Disk
Arrays, the architecture (microcode features, processors power, cache dimension and management
algorithm, raid level protection, etc…) of the SDA has taken predominance over the disk characteristics
itself. We will discuss Storage Disk Array later in the document and we' ll examine the backend I/O activity
and how it can be impacted .from the disks characteristics.

The major components of disk performance are the following:

• Seek Time - required to move the disk drives heads from one cylinder to another. This obviously
depends on how far the heads have to travel. Not as obviously , there is no linear relationship with
the number of cylinders you need to cross over as the heads need to accelerate, decelerate and then
stabilize in their new position. To reduce confusion, disks manufacturers typically specify a
minimum seek (one cylinder to the next), an average seek time (the average time required for the
heads to move from one track to any other track) and a maximum seek time.

• Latency - once the disk drives has moved the heads in to place it has to wait until the data you want
has moved under the head. This requires at most one full rotation of the disk itself - on the average,
the disk will have to spin one half turn. Therefore the disk rotational speed also determines the disk
latency, or the amount of time it takes to get ready for a data transfer.

• Transfer rate - a disk's raw transfer rate is the speed at which it moves data. A program never
receives useful data this fast; the raw transfer just measures the speeds at which bits come from the
disk drive; it doesn't account for formatting data that your program never sees, wasted space on the
disk, and other factors.

The following table contains some standard disk characteristics that are usually provided by different disk
manufacturers. In our opinion the most important factors are spindle speed, external transfer rate and latency
time.

Before we go further in depth, it’s better to summarize some additional concepts from a server perspective.

18GB LP 3.5"
(Cheeta)

36GB - 3.5"
(Cheetah)

50GB - 3.5"
(Cuda)

73 GB - 3.5"
(Cheetah)

181 GB -
3.5" (Cuda)

Interface Ultra SCSI Ultra SCSI Ultra SCSI
Fast Wide

SCSI-2
Fast Wide

SCSI-2
Spindle Speed
(rpm) 10.000 10.000 7.200 10.000 7.200
External transfer
rate (MB/sec) 40 40 40 33 33
Actuator-level
buffer 4MB 4MB 4MB 16 MB 16 MB
Minimum seek
(msec)

0.6/0.9
(read/write)

0.8/1.1
(read/write)

0.9/1.2
(read/write)

1.1/1.4
(read/write)

1.1/1.4
(read/write)

Maximum seek
(msec)

12-13
(read/write)

14.5/15.7
(read/write)

16/17
(read/write)

16/18
(read/write)

16/18
(read/write)

Average seek
(msec)

5.7/6.5
(read/write)

6.15/6.85
(read/write)

7.6/8.4
(read/write)

7.9/8.7
(read/write)

7.9/8.7
(read/write)

Latency (msec) 2,99 2,99 4,17 4,17 4,17

CMG-Italia & EuroCMG 2002

6

3 Volume group and filesystem concepts

3.1 Physical Volumes
A disk must be designated as a physical volume and be put into an available state before it can be assigned
to a volume group. A physical volume has certain configuration and identification information written on it.
This information includes a physical volume identifier that is unique to the system. When a disk becomes a
physical volume, it is divided into 512-byte physical blocks. You designate a disk as a physical volume with
the mkdev or chdev commands or by using the System Management Interface Tool (SMIT) to add a
physical volume.
The first time you start up the system after connecting a new disk, the operating system detects the disk and
examines it to see if it already has a unique physical volume identifier in its boot record. If it does, the disk
is designated as a physical volume and a physical volume name (typically, hdiskx where x is a unique
number on the system) is permanently associated with that disk until you undefine it.

3.2 Volume Groups
The physical volume must now become part of a volume group. A volume group is a collection of 1 to 32
physical volumes of varying sizes and types. A physical volume may belong to only one volume group per
system; there can be up to 255 volume groups per system.

3.3 Logical Volumes
After you create a volume group, you can create logical volumes within that volume group. A logical
volume, although it may reside on noncontiguous physical partitions or even on more than one physical
volume, appears to users and applications as a single, contiguous, extensible disk volume. You can create
additional logical volumes with the mklv command. This command allows you to specify the name of the
logical volume and define its characteristics, including the number and location of logical partitions to
allocate for it. After you create a logical volume, you can change its name and characteristics with the chlv
command, and you can increase the number of logical partitions allocated to it with the extendlv command.
The default maximum size for a logical volume at creation is 128 logical partitions, unless specified to be
larger. The chlv command is used to relax this limitation.

3.4 Limitations for Logical Storage Management
The following table shows the limitations for logical storage management. Although the default maximum
number of physical volumes per volume group is 32 (128 in case of big volume group), you can set the
maximum for user-defined volume groups when you use the mkvg command. For the rootvg, however, this
variable is automatically set to the maximum by the system during the installation.

MAXPVS: 32 (128 big volume group)
MAXLVS: 255 (512 big volume group)

Limitations for Logical Storage Management
Volume group 255 per system
Physical volume (MAXPVS / volume group factor) per volume group
Physical partition (1016 x volume group factor) per physical volume up to 1024MB each in size.
Logical volume MAXLVS per volume group
Logical partition (MAXPVS * 1016) per logical volume

If you previously created a volume group before the 1016 physical partitions per physical volume restriction
was enforced, stale partitions in the volume group are not correctly tracked unless you convert the volume
group to a supported state. You can convert the volume group with the chvg -t command. A suitable factor
value is chosen by default to accommodate the largest disk in the volume group.
For example, if you created a volume group with a 9GB disk and 4MB partition size, this volume group will
have approximately 2250 partitions. Using a conversion factor of 3 (1016 * 3 = 3048) allows all 2250
partitions to be tracked properly. Converting a volume group with a higher factor enables inclusion of a

CMG-Italia & EuroCMG 2002

7

larger disk of partitions up to the 1016* factor. You can also specify a higher factor when you create the
volume group in order to accommodate a larger disk with a small partition size.
These operations reduce the total number of disks that you can add to a volume group. The new maximum
number of disks you can add would be a 32/factor. For example, a factor of 2 decreases the maximum
number of disks in the volume group to 16 (32/2).
The Logical Volume Manager (LVM) consists of the logical volume device driver (LVDD) and the LVM
subroutine interface library. The logical volume device driver (LVDD) is a pseudo-device driver that
manages and processes all I/O. It translates logical addresses into physical addresses and sends I/O requests
to specific device drivers. The LVM subroutine interface library contains routines that are used by the
system management commands to perform system management tasks for the logical and physical volumes of
a system. The programming interface for the library is available to anyone who wishes to expand the
function of the system management commands for logical volumes.

3.5 File Systems Overview

A file system is a hierarchical structure (file tree) of files and directories. This type of structure resembles an
inverted tree with the roots at the top and branches at the bottom. This file tree uses directories to organize
data and programs into groups, allowing the management of several directories and files at one time.
Some tasks are performed more efficiently on a file system level than on each directory within the file
system. For example, you can back up, move, or secure an entire file system.
A file system resides on a single logical volume. The mkfs (make file system) command or the System
Management Interface Tool (smit command in AIX env.) creates a file system on a logical volume. Every
file and directory belongs to a file system within a logical volume.

3.6 Placement and reorganizing a logical volume, volume group or fileystem

smit reorgvg
The reorgvg command reorganizes the placement of allocated physical partitions within the VolumeGroup,
according to the allocation characteristics of each logical volume. Use the LogicalVolume parameter to
reorganize specific logical volumes; highest priority is given to the first logical volume name in the
LogicalVolume parameter list and lowest priority is given to the last logical volume in the parameter list.
The volume group must be varied on and must have free partitions before you can use the reorgvg
command.

If the workload shows a significant degree of I/O activity, you can investigate the physical placement of the
files on the disk to determine if reorganization at some level would yield an improvement. To see the
placement of the partitions of logical volume hd11 within physical volume hdisk0, use the following unix
commands.

$ lslv -p hdisk0 hd11

hdisk0:hd11:/home/op
USED USED USED USED USED USED USED USED USED USED 1-10
USED USED USED USED USED USED USED 11-17

USED USED USED USED USED USED USED USED USED USED 18-27
USED USED USED USED USED USED USED 28-34

USED USED USED USED USED USED USED USED USED USED 35-44
USED USED USED USED USED USED 45-50

USED USED USED USED USED USED USED USED USED USED 51-60
0052 0053 0054 0055 0056 0057 0058 61-67

0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 68-77
0069 0070 0071 0072 0073 0074 0075 78-84

CMG-Italia & EuroCMG 2002

8

The word USED means that the physical partition is in use by a logical volume other than hd11. The
numbers indicate the logical partition of hd11 that is assigned to that physical partition.
We look for the rest of hd11 on hdisk1 with:

$ lslv -p hdisk1 hd11

hdisk1:hd11:/home/op
0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 1-10
0045 0046 0047 0048 0049 0050 0051 11-17

USED USED USED USED USED USED USED USED USED USED 18-27
USED USED USED USED USED USED USED 28-34

USED USED USED USED USED USED USED USED USED USED 35-44
USED USED USED USED USED USED 45-50

0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 51-60
0011 0012 0013 0014 0015 0016 0017 61-67

0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 68-77
0028 0029 0030 0031 0032 0033 0034 78-84

We see that logical volume hd11 is fragmented within physical volume hdisk1, with its first logical
partitions in the inner-middle and inner regions of hdisk1, while logical partitions 35-51 are in the outer
region. A workload that accessed hd11 randomly would experience unnecessary I/O wait time as the disk's
accessor moved back and forth between the parts of hd11. These reports also show us that there are no free
physical partitions in either hdisk0 or hdisk1.

$ fileplace -pv big1

Displays the placement of file blocks within logical or physical volumes.

The resulting report is:

File: big1 Size: 3554273 bytes Vol: /dev/hd10 (4096 byte blks)
Inode: 19 Mode: -rwxr-xr-x Owner: frankw Group: system

Physical blocks (mirror copy 1) Logical blocks
------------------------------- --------------
01584-01591 hdisk0 8 blks, 32 KB, 0.9% 01040-01047
01624-01671 hdisk0 48 blks, 192 KB, 5.5% 01080-01127
01728-02539 hdisk0 812 blks, 3248 KB, 93.5% 01184-01995

868 blocks over space of 956: space efficiency = 90.8%
3 fragments out of 868 possible: sequentiality = 99.8%

This shows that there is very little fragmentation within the file, and those are small gaps. We can therefore
infer that the disk arrangement of big1 is not affecting its sequential read time significantly. Further, given
that a (recently created) 3.5MB file encounters this little fragmentation, it appears that the file system in
general has not become particularly fragmented.

CMG-Italia & EuroCMG 2002

9

4 Storage Disk Array
A storage disk array is a unit which includes a set of disk drives, usually a cache and channel interface
connected to the host and essentially microcode. Beyond this definition there are many different
architectures, so it is important to evaluate the main characteristics and understand how performance can be
impacted from them.

Microcode is the core of every disk array. It needs to be well tested, flexible, full of functionalities and has
to be able to manage all the resources inside the array (channel interface or directors, cache, disk adapters
and disks itself). Of course in order to achieve this goal it must rely on very powerful.
Having large cache inside the SDA is preferred but it’s not a performance warranty if the microcode is not
able to manage concurrent accesses, prefetching or destaging data according to I/O patterns.

Cache is the performance element of the SDA and has the goal to reduce I/O response time. Data are
transferred to the channel at electronic speed instead of disk speed. Based on performance numbers
available, a read I/O from an uncached disk would take approximately 12 msec., the same read served from
cache would take almost 0,5 msec. It's evident the importance of resolving I/O as much as possible in cache,
so the imperative should be “cache hits are good....maximize cache hits” , but how can we do that?

Before we can answer that question we have to understand what is happening in cache and how it integrates
with the workload. A clear understanding of both will enable you to diagnose cache performance and
recommend a solution.
Real workloads are composed of many different types of I/O activity. They can be read or write requests,
they have different data block sizes, they can be skewed (some disks or host channels do more work than
others), they can be highly random, sequential or mixed and they are often 'bursty' (peak reads or writes can
come at unexpected times). The workload used for lab measurements are normally static, simple and
designed to always yield certain levels of hit ratio (access of r/w data directly out of cache), regardless of the
cache size and algorithms. In real life, the actual application behaviour is greatly influenced by performance
optimization algorithms of the SDA.

Intelligent cache management algorithms can perform pre-fetch, LRU and FastWrite activities in order to
make a read I/O a hit in cache or optimise the cache residency time. In EMC Symmetrix in addition the user
has been provided the capability (Quality of Service) to define segments of cache that can be managed by a
separate LRU list associated with one or more designated logical volumes. This way a user can guarantee
that an important application has a minimum number of cache slots, regardless of the activity levels of the
other application in the system.
Another important point is the cache parallel access. With larger and larger storage capacity, SDA has
improved cache size (up to 64 GB), therefore parallel access is very important to that resource . Parallel
access can reduce cache contention. The EMC Symmetrix cache is partitioned up to 16 separately
addressable regions, so the contention probability that a second process is attempting to access a cache
region is 6 % (1/16) or in other words it is possible to satisfy I/O requests without incurring a queue for
resources, 94% of the time.
So a robust cache architecture can achieve performance improvements over other solutions and can make
the difference. for a given workload in order to get higher hit ratios.

Disk configuration is another key element. Even when there are very high hit ratios (more than 90%), data
must be written to disks. For example if you analyse a workload of 10.000 4K I/Os, with a 3:1 R/W ratio:
7500 will be reads and 2.500 will be writes. If we can get a 90% hit in cache, it means that 10% (1.000) of
I/Os (reads) are made from disks. We have also to destage the 2.500 writes from cache to disks. Each write
involves additional backend I/Os depending on RAID level protection.(we'll examine this aspect in the next
paragraph and the write workload can be double or more). Now it's clear that even with a 90% of cache hits
the SDA has to manage at least 1.000 + (2.500*n) I/Os where n depends on the RAID level protection. In
any case the value of backend I/Os is >35% of the total (in our case > 3.500). It's very important to
distribute, or 'stripe' those I/Os to different disks in order to have concurrent parallel processes. These

CMG-Italia & EuroCMG 2002

10

concepts are behind the creation inside the SDA, of volumes which are physically striped over different
disks, but are presented to the operating system as they were a single physical disk (an hdisk for AIX or disk
F for Windows). The mapping of these disks which reside on multiple physical disks are done by the
microcode inside the SDA and are called 'metavolumes' . Each physical disk is recognized as a member in
the metavolume.
The OS is not aware of this internal configuration and it only sees the 'metavolume' as a unique entity. I/O
workload to that hdisk is then striped over different physical disks inside the SDA in order to improve
throughput with no overhead at the CPU level. Usually 4 to 8 members are used to satisfy most application
requirements especially based on Oracle or SAP.
Logical Volume Manager treats these metavolumes as all the other disks in the system therefore it’s still
possible to partition the metavolume into different logical volumes.
Striping could be done at the host level, like Veritas Volume Manager, but there are some disadvantages as
high CPU consumptions cycles and more complex management.

The following figure depicts the Metavolume and striping architecture.

The metavolume is made by the four different coloured pieces residing on different disks. If those disks are
also mirrored protected you can have an additional 4 drives to handle the back end workload for a total of 8
drives.

Different RAID level can also impact performance and data integrity protection. RAID first known as
Redundant Array of Inexpensive Disks, changed its acronym to Redundant Array of Independent disks.
Even if some open systems can manage software RAID it’s recommended that the disk array provides this
functions in order to generate less overhead at CPU and channel overhead.
Following are the description of the main RAID level implemented.

RAID 0 - it’s erroneously defined raid since there is no data protection. It allows data to be written on
consecutive physical drives, with a fixed number of 512-byte blocks per write.. That is, data
integrity is entirely dependent on the frequency and validity of backups. This is usually
known as striping and it’s analogous to the Logical Volume Striping. It can be combined with
some of the following RAID levels.

RAID1 - it’s the simplest solution to protect data, since it consists of duplicating data across 2 or more
disks (if combined with striping). Even if half of the drives are used to mirror the other drives,
costs are no more an issue since larger capacity disks has become available to market. Every

I/O

RAID 1 metavolume

CMG-Italia & EuroCMG 2002

11

write I/O operation from the host will exploit into two write I/O operations toward the
disk backend. Microcode improvements can reduce this activity by grouping write I/Os
belonging to the same track/cylinder. RAID 1 resolves all of the data integrity and availability
concerns and has no performance impact in case of failure of one of the 2 disks. In fact, in
case of failure, data can be retrieved, simply reading the surving disk with no additional
overhead. There are some implemented improve techniques, like EMC mirroring, which can
reduce latency time allowing read I/Os from both disks (the one better positioned to the
requested block of data).

- This level of function could be analogous to the logical volume mirroring function of the
logical volume manager, but do not impact on CPU activity and channel utilization (each write
I/O should be duplicated across channels) and could not benefit of technique like ‘mirroring’.

RAID3 - Data is striped on a byte-by-byte basis across a set of data drives, while a separate parity drive
contains a parity byte for each corresponding byte position on the data drives. If any single
drive fails, its contents can be inferred from the parity byte and the surviving data bytes.
Usually this implementation is suited for sequential large block sized I/O; PAM (Parallel
Access Method) is usually used. As it’s possible to do a single I/O per time, there is no
contention to the parity disk.

RAID5 - Data is striped block by (512-byte) block, but portions of several (not necessarily all) of the
drives are set aside to hold parity information. This spreads the load of writing parity
information more evenly, but parity calculation adds overhead to the entire system
wherever it’s done. In fact every write operation from the host requires two read
operations from the back end (old data and old parity) and create two additional writes
(new data and new parity). This behaviour introduces such an overhead to the backend that
RAID-5 is not suggested for high performance environments like SAP and Oracle are. In
addition in case of a disk failure, performance can be impacted due to data rebuild activity
which involves all the disks belonging to the same RAID 5 group; in this case the more disks
are configured in a RAID-5 group the more will be the I/O backend overhead in case of data
reconstruction.

RAID devices should be considered primarily a data-integrity and data-availability solution, rather than a
performance solution. You should also consider that higher level of RAID implementation usually involves
more complex microcode management and more resources are needed.
One last item is that if performance is a concern, you should configure your raid group, whatever it is, with
disks belonging to multiple SCSI adapters, rather than a single one, in order to achieve the maximum I/O
back end parallelism. This requires, once again, a good knowledge of the SDA architecture.

CMG-Italia & EuroCMG 2002

12

5 Native UNIX Utilities to Analyse the I/O System

I/O performance analysis is possible by using native UNIX utilities as sar or iostat in order to collect logical
disk statistics as disk busy , transfers per second and kbyte throughput per second. Other utilities such as
vmstat can provide the total number of I/O’s done each interval. The results of these utilities can indicate the
amount of I/O throughput performed by each system. These kind of statistics need to be collected for all
systems that are connected to the storage controllers. Two principle indicators of I/O activity are the amount
of transfers per second performed by the system and the I/O wait percentage which indicates the percentage
of time the system must wait for the processes to complete I/O activity.
One way to measure the I/O’s response time can be performed by using the trace utility offered by AIX
which is not discussed in this document. This writes a lot of records. Here it’s important to capture the I/O
functions of the program.

The AIX systems provides very few indicators that measure the I/O subsystem. In this chapter we will
explain the most important measurements that can be obtained by the native utilities.
The main utilities we’ll talk about are vmstat , iostat, ps and filemon. The native utility sar will not be
covered because it provides the same statistics as iostat ..

The vmstat utility provides the overall system I/O for the system. The values are accumulated for each
measurement. By calculating the difference between the sum of (page ins+page outs) for two consecutive
intervals you get the amount of I/O which occurred in that interval. As seen in the following example the
output also distinguishes between the pages paged to the file systems (page ins / outs) and the pages paged
to the paging dataset (paging space page ins / outs) . The overall system I/O is calculated by means of the
page ins and page outs.

An example of the vmstat –s utility.

1917453168 total address trans. faults
195652782 page ins
35188650 page outs

215 paging space page ins
556 paging space page outs

0 total reclaims
74931412 zero filled pages faults

323046 executable filled pages faults
503394332 pages examined by clock

338 revolutions of the clock hand
201588144 pages freed by the clock

256442 backtracks
0 lock misses

372144 free frame waits
0 extend XPT waits

32246026 pending I/O waits
56706175 start I/Os
56707861 iodones

784710926 cpu context switches
345259597 device interrupts

0 software interrupts
0 traps

265340360 syscalls

CMG-Italia & EuroCMG 2002

13

The iostat provides statistics for each disk available on the system . Measurement statistics as kbytes transfer
per second (kbps) , disk busy (% _tm_act) , transactions per second (tps) , kbytes read (kb_read) , kbytes
written l (kb_wrtn) , percent of time the system had to wait to perform I/O (% iowait).
The interval length and frequency are parameters provided to the utility. The utility does not provide a
timestamp for the interval written. This must be done by developing a homemade script.

An example of the output of iostat :

tty: tin tout avg-cpu: % user % sys % idle % iowait
0.2 25.8 18.9 8.5 66.0 6.6

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 3.1 26.1 4.6 2542641 7014128
hdisk1 2.9 20.1 4.2 342724 7015280
hdisk137 0.0 0.0 0.0 0 0
hdisk138 0.0 0.0 0.0 0 0
hdisk139 0.0 0.0 0.0 0 0
hdisk140 0.0 0.0 0.0 0 0
hdisk141 0.0 0.0 0.0 0 0
hdisk142 0.0 0.0 0.0 0 0
hdisk143 0.0 0.0 0.0 0 0
hdisk144 0.0 0.0 0.0 0 0
hdisk145 0.0 0.0 0.0 0 0
hdisk146 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

All the disks seen by iostat are defined as available to the operating system. Some disks are attached
internally to the server while others are attached externally. The I/O configuration data can be displayed in
the AIX environment by the lscfg utility. The output of this utility displays configuration, diagnostic, and
vital product data information about the system. It provides then name , locations and descriptions of each
device configured. In the following example I extracted some disks and adapters.

The lscfg utility just provides the devices defined to the system.

Partial output of the lscfg utilty

Name location description
+ scsi0 10-60 Wide/Fast-20 SCSI I/O Controller
+ ses0 10-60-00-15,0 SCSI Enclosure Services Device
+ scsi1 10-68 Wide/Fast-20 SCSI I/O Controller
+ cd0 10-68-00-3,0 SCSI Multimedia CD-ROM Drive (650

MB)
* pci1 00-f8500000 PCI Bus
+ sa2 20-58 IBM 8-Port EIA-232/RS-422A (PCI)

Adapter
+ ssa0 20-68 IBM SSA 160 SerialRAID Adapter

(14109100)
+ ssa1 30-58 IBM SSA 160 SerialRAID Adapter

(14109100)
+ scsi2 30-60 Wide/Fast-20 SCSI I/O Controller
+ hdisk137 30-60-00-0,0 EMC Symmetrix SCSI RDF1 RaidS
+ hdisk138 30-60-00-0,1 EMC Symmetrix SCSI RDF1 RaidS
+ hdisk184 50-68-00-15,0 EMC Symmetrix SCSI RaidS
+ hdisk185 50-68-00-15,1 EMC Symmetrix SCSI RaidS
+ scsi5 50-70 Wide/Fast-20 SCSI I/O Controller
+ fcs1 60-58 FC Adapter
* fscsi1 60-58-01 FC SCSI I/O Controller Protocol

Device
+ scsi6 60-68 Wide/Fast-20 SCSI I/O Controller
+ ent4 60-70 IBM 10/100 Mbps Ethernet PCI Adapter

(23100020)
* pci6 00-f8e00000 PCI Bus

CMG-Italia & EuroCMG 2002

14

+ scsi7 70-58 Wide/Fast-20 SCSI I/O Controller
+ scsi8 70-60 Wide/Fast-20 SCSI I/O Controller
+ scsi9 70-68 Wide/Fast-20 SCSI I/O Controller
+ scsi10 70-70 Wide SCSI I/O Controller
* pci7 00-f8f00000 PCI Bus
* hdisk2 20-68-L SSA Logical Disk Drive
* hdisk3 20-68-L SSA Logical Disk Drive
* hdisk234 20-68-L SSA Logical Disk Drive
* hdisk214 20-68-L SSA Logical Disk Drive
+ pdisk9 20-68-D40C-01-P SSA160 Physical Disk Drive (18200

MB)
+ pdisk4 20-68-D40C-02-P SSA160 Physical Disk Drive (18200

MB)
+ pdisk1 20-68-D40C-03-P SSA160 Physical Disk Drive (18200

MB)

The lsdev utility shows the devices that are available to the system.
You can notice the available and defined devices in the following example.

A partial output of the lsdev utility

scsi0 Available 10-60 Wide/Fast-20 SCSI I/O Controller
scsi1 Available 10-68 Wide/Fast-20 SCSI I/O Controller
isa0 Available 10-78 ISA Bus
ssa0 Available 20-68 IBM SSA 160 SerialRAID Adapter
ssa1 Available 30-58 IBM SSA 160 SerialRAID Adapter
scsi2 Available 30-60 Wide/Fast-20 SCSI I/O Controller
ssa2 Available 30-70 IBM SSA 160 SerialRAID Adapter
fcs0 Available 50-58 FC Adapter
scsi4 Available 50-68 Wide/Fast-20 SCSI I/O Controller
scsi5 Available 50-70 Wide/Fast-20 SCSI I/O Controller
fcs1 Available 60-58 FC Adapter
ent3 Available 60-60 IBM 10/100 Mbps Ethernet PCI Adapter
scsi6 Available 60-68 Wide/Fast-20 SCSI I/O Controller
ent4 Available 60-70 IBM 10/100 Mbps Ethernet PCI Adapter
scsi7 Available 70-58 Wide/Fast-20 SCSI I/O Controller
ses0 Available 10-60-00-15,0 SCSI Enclosure Services Device
cd0 Available 10-68-00-3,0 SCSI Multimedia CD-ROM Drive
hdisk0 Available 30-68-00-8,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 30-68-00-9,0 16 Bit LVD SCSI Disk Drive
ses1 Available 30-68-00-15,0 SCSI Enclosure Services Device
fscsi0 Available 50-58-01 FC SCSI I/O Controller Protocol Device
fscsi1 Available 60-58-01 FC SCSI I/O Controller Protocol Device
lvdd Available LVM Device Driver
ssar Defined SSA Adapter Router
pdisk0 Available 20-68-D40C-07-P SSA160 Physical Disk Drive
pdisk1 Available 20-68-D40C-03-P SSA160 Physical Disk Drive
hdisk106 Available 70-58-00-2,3 EMC Symmetrix SCSI RDF1 RaidS
hdisk107 Available 70-58-00-2,4 EMC Symmetrix SCSI RDF1 RaidS
hdisk223 Defined 30-60-00-2,4 EMC Symmetrix SCSI RDF1 RaidS
hdisk224 Defined 30-60-00-2,5 EMC Symmetrix SCSI RDF1 RaidS

CMG-Italia & EuroCMG 2002

15

The ps utility provides an options to analyse the amount of I/O done on behalf of the processes :

PGIN - (v flag option) The number of disk I/Os resulting from references by the process to pages not loaded
in core.

In the following you’ll find an example of ps command output:

ps vgcw

PID PGIN %MEM COMMAND
0 7 1.0 swapper
1 130 0.0 init

3748 1816 0.0 syncd
5722 1 0.0 ssa_daemo
7282 147 0.0 errdemon

16792 2 0.0 rpc.lockd
23704 14 0.0 ksh
26322 26 0.0 vmstat
26634 9 0.0 eqqtw

CMG-Italia & EuroCMG 2002

16

5.1 FILEMON STATISTICS

Monitors the performance of the file system, and reports the I/O activity on behalf of logical files, virtual
memory segments, logical volumes, and physical volumes.

Logical file system
The filemon command monitors logical I/O operations on logical files. The monitored operations include all
read, write, open, and lseek system calls, which may or may not result in actual physical I/O, depending on
whether or not the files are already buffered in memory. I/O statistics are kept on a per-file basis. Virtual
memory system.

The filemon command monitors physical I/O operations (that is, paging) between segments and their images
on disk. I/O statistics are kept on a per-segment basis. Logical volumes

The filemon command monitors I/O operations on logical volumes. I/O statistics are kept on a per-logical-
volume basis. Physical volumes

The filemon command monitors I/O operations on physical volumes. At this level, physical resource
utilizations are obtained. I/O statistics are kept on a per-physical-volume basis.

Most Active Logical Volumes Report
Column Description
util Utilization of the volume (fraction of time busy). The rows are sorted by this field, in decreasing order.
#rblk Number of 512-byte blocks read from the volume.
#wblk Number of 512-byte blocks written to the volume.
KB/sec Total transfer throughput, in Kilobytes per second.
volume Name of volume.
description Contents of volume: either a file system name, or logical volume type (paging, jfslog, boot, or sysdump).

Also, indicates if the file system is fragmented or compressed.

Most Active Physical Volumes Report
Column Description
util Utilization of the volume (fraction of time busy). The rows are sorted by this field, in decreasing order.
#rblk Number of 512-byte blocks read from the volume.
#wblk Number of 512-byte blocks written to the volume.
KB/sec Total volume throughput, in Kilobytes per second.
volume Name of volume.
description Type of volume, for example, 120MB disk, 355MB SCSI, or CDROM SCSI.

Note: Logical volume I/O requests start before, and end after, physical volume I/O requests. For
that reason, total logical volume utilization will appear to be higher than total physical volume
utilization.

By looking at the location it’s possible to see what scsi locations the disk is Using.

Scsi10 Available 30-60 Wide/Fast-20 SCSI I/O Controller
Hdisk900 Available 30-60-00-2,4 EMC Symmetrix SCSI RDF1 RaidS

The disk hdisk900 is located on scsi adapter 30-60.

The command lsdev -Cs scsi reports on the current address assignments on each SCSI bus. For the original
SCSI adapter, the SCSI address is the first number in the fourth pair of numbers in the output. In the
following output example, the 400MB disk is at SCSI address 0, the 320MB disk at address 1, and the 8mm
tape drive at address 5.

CMG-Italia & EuroCMG 2002

17

hdisk0 Available 00-01-00-00 400 MB SCSI Disk Drive
hdisk1 Available 00-01-00-10 320 MB SCSI Disk Drive
rmt0 Defined 00-01-00-50 2.3 GB 8mm Tape Drive

6 ROTS - rules of thumb
Some points to acknowledge before considering ROTS.

1) The higher the blocksize the higher the bus utilization with less protocol overhead. The protocol
traffic used is about 50% of the bandwidth of the bus for small blocksize I/O’s.

2) the average I/O size performed by the application, how many applications will run concurrently
3) the kind of channel available ? Fast Wide SCSI, Ultra-SCSI, FC
4) kind of raid configuration do I need? Raid 10 (mirroring plus striping) is better than Raid 5?
5) striping or not striping?
6) the average utilization of the disks (the maximum I/O that can be performed by a disk is about 100

I/O’s second) if the average utilization is 20% then the average I/O’s would be also 20 I/O’s
second. Based on the bus’s throughput capacity and number of I/O’s it’s possible to calculate the
number of disks you need to held your workload.

7) Always look for the slowest component in the I/O physical path.
8) Simulation tools from Disk Array vendors and cache hit analysis can help you in configuring your

disk subsystem.

6.1 Channel bandwith and blocksize

Studies of both open systems and MVS systems show that average utilization for medium- to large-scale
disk farms is 20% or less, with very large systems averaging only 8%. Assuming 20% average utilization
(and thus about 20 I/Os per second per disk drive), the maximum number of drives per bus looks like this:

I/O Size

 Bus speed 2K 4K 8K 16K

fast 126 82 48 26
fast/wide 173 126 82 48
fast-20/wide 212 173 126 82
fast-40/wide 240 212 173 126

5000/2= 2500 I/O of 2K

Bus capacity/ throughtput_sec 5000k/2k =2500 I/O seconds

5000/2= 2500 I/O 2500/(100*.20)= 125 disks (20% = 20 tps)

5000/2= 2500 I/O 2500/100= 25 disks (100% = 100 tps)

6.2 Access Density

Access density is defined as the total throughput divided by the total space. Based on many experiences
done at different sites the value of 0.2 seems to provide the correct relationship. Based on this knowledge it
could be possible for us to calculate the amount of I/O the system will perform or how much space we’ll
need.

CMG-Italia & EuroCMG 2002

18

7 Storage Vendor Utilities

First signs of high disk busy, high queuing (not all systems provide queuing) could point out that disks are
suffering from I/O problems. At this stage we would have to locate the logical disks physical positions
inside the storage controller and check if other logical disks from the same or other systems are located on
these same physical disks. The matching of the physical locations and further performance statistics at the
physical and logical level (%write, %read, I/O sec, MB/s) or for the entire storage controller (channel and
cache utilization, channels, ports) can be done by storage controller manufacturer vendors

By using the an EMC utility called syminq it’s possible to get the list of the defined disks on the system.
This utility performs an inquiry on all the scsi disks in the system and shows their characteristics.

The column description are as follows :
Name - name of device
Type - configurations type (EMC disks provide additional info as SRDF, gatekeeper,etc)
Vendor - (EMC , IBM , etc)
ID - device identification
REV - revision (microcode version)
Ser Num -the order from right to left
 last two bytes - symmmetrix storage disk array.
 three middle bytes - the logical volume (sym device)
 first two bytes- the port number (port A=0-16 , port B=17-29)
Cap - capacity

Device Product Device
------------------- --------- --------------------- ------------------

Name Type Vendor ID Rev Ser Num Cap (KB)
------------------- --------- --------------------- ------------------

/dev/rhdisk0 IBM DMVS09V 3031 F80383F2 N/A
/dev/rhdisk1 IBM DMVS09V 3031 F803CBDC N/A
/dev/rhdisk2 IBM SSA DEVICE N/A
/dev/rhdisk3 IBM SSA DEVICE N/A
/dev/rhdisk17 R1 EMC SYMMETRIX 5265 6300D291 N/A

EXAMPLE:
63 - SYMMETRIX
00D – (LOGICAL VOLUME) SYM DEVICE
29 – Processor B
1 Port B

/dev/rhdisk18 R1 EMC SYMMETRIX 5265 6300E291 N/A
/dev/rhdisk19 R1 EMC SYMMETRIX 5265 6300F291 N/A
/dev/rhdisk21 R1 EMC SYMMETRIX 5265 63011291 N/A
/dev/rhdisk118 R1 EMC SYMMETRIX 5265 63072271 N/A
/dev/rhdisk119 R1 EMC SYMMETRIX 5265 63073271 N/A
/dev/rhdisk184 GK EMC SYMMETRIX 5265 63090291 N/A
/dev/rhdisk185 GK EMC SYMMETRIX 5265 63091291 N/A
/dev/rhdisk186 GK EMC SYMMETRIX 5265 63092291 N/A
/dev/rhdisk187 R1 EMC SYMMETRIX 5265 63001291 N/A
/dev/rhdisk189 R1 EMC SYMMETRIX 5265 63003291 N/A
/dev/rhdisk232 R1 EMC SYMMETRIX 5265 6301A271 N/A
/dev/rhdisk233 R1 EMC SYMMETRIX 5265 6301B271 N/A
/dev/rhdisk234 IBM SSA DEVICE N/A
/dev/rhdisk295 GK EMC SYMMETRIX 5265 63090201 N/A
/dev/rhdisk296 GK EMC SYMMETRIX 5265 63091201 N/A

CMG-Italia & EuroCMG 2002

19

7.1 Control Center Open Edition (CCOE)

Control Center Open Edition is the base software that allows you to interact with the SDA and discover the
mapping of logical volumes to physical volumes. It has a multi-tier architecture with host(s) at each tier
running different CC components that perform specific roles. All tiers can co-exist on a single host (single
host infrastructure) or they can be distributed to several hosts (distributed infrastructure).
The architecture of the CCOE component can be found in appendix A.
We will examine some of the CC components which are best related to our study, like Symmetrix Manager,
Workload Analyzer and Optimizer.

7.2 CC Symmetrix Manager

This component of CCOE allows realtime monitoring of SDA status and performance. It makes it possible
to understand if the I/O workload on that disk exceeds the number of I/O’s the disk can handle, if there are
resource contentions inside the SDA (for example at the director level). When a performance problem
arises, the administrator can drill down and find out which is the physical disk involved, how many logical
volumes are mapped to that disk, which filesystem is allocated on a specific logical volume. Through
relationship tables it’s possible to relate the database, tablespace, DB instance, DB file, Filesystem, Volume
Group, Logical Volume, Host Device, Host to Symmetrix front-end director and port, Symmetrix device,
Symmetrix disk.
In addition Symmetrix Manager can create new logical devices, change logical device types, create or
modify meta devices, set host director port attributes.
It is also possible to set thresholds and alerts and integrate the components into an existent framework like
Tivoli, Patrol, Unicenter.

7.3 CC Workload Analyzer

This component of CCOE tracks and keeps historical info about performance behaviour of each single
component inside the SDA. Charts are available for the following components:
Channel interface (MB/s); cache hits for all I/O types; read/write ratio; logical volumes I/O workload, etc…
Once you know the relationship between the physical and logical volumes, you can understand if there are
overloaded disks when compared one to another. In addition it’s possible to create capacity plan charts in
order to provide the correct dimension for the future architecture.
A sample of total throughput from a specific server is shown. It is now easy to understand if channel
utilization is a potential bottleneck and if we need additional channels from the server to access the SDA.

With Workload Analyzer it is therefore possible to monitor and discover all potential bottlenecks inside the
I/O chain from the channels up to the physical disks. It's also possible to monitor if I/O striping is well
balanced across all the physical volumes belonging to the logical striped volume.

7.4 CC Optimizer

The CCOE component allows you to automatically balance the I/O workload across the disks inside the
SDA. Optimizer gathers all statistics (number of I/Os, MB/s transferred, etc…) for a specified group of
volumes in a specified interval. It then creates a list of the highest disks accessed in order to swap the
physical disks data with each other in order to balance the I/O workload. There should be relief from the day
by day tuning to find out performance bottlenecks inside the SDA.

CMG-Italia & EuroCMG 2002

20

8 Conclusions

Native UNIX tools provide a limited view of the storage disk arrays. The results of these utilities can be
used as an initial step when performing storage array analysis but they are not sufficient.
There is a need to understand the internal storage architecture (disks, cache, stripping schemes), attached
components (adapters, buses , channels, remote links) and software components of the Storage Disk Array
which will permit us to gather SDA data and go in deeper detail.

We hope this document will help you when performing disk storage performance analysis in the Open
environment .

CMG-Italia & EuroCMG 2002

21

9 APPENDIX A – EMC utilities’ architecture and graphs

9.1 Control Center Open Edition architecture
The first tier of CC contains the Console(s) and other CC applications; the Console is the user interface to
the CC through where the user can perform all tasks.

The second tier of ECC contains the infrastructure components: the ECC Server (for common services, like
Console data requests, user control access to specific CC objects, tracking of all managed objects and their
communications); the Repository (contains both historical and current information on configuration, status,
health data; it is the core intelligence of the system); Performance Archive(s) (historical Symmetrix and
Host performance data); the Store(s) (which is responsible for converting data coming from the Agents into
the relational tables of the Repository).

The third tier is the Agents tier. It consists of two different kinds of Agents: a Master Agent which runs on
each Host that manages the Individual Agents which manage or monitor specific object domains, such as
Storage Agents, Host Agents, Database Agents, Connectivity Agents. Agents pass the data they collect to
the Store, which writes it to the Repository or can collect transient data, such as alerts and real time
performance data, and pass this directly to the CC Server.

We will examine some of the CC components which are best related to our study, like Symmetrix Manager,
Workload Analyzer and Optimizer.

9.2 Symmetrix Manager Utilization example

The following charts displays an example of how to use this tool.

If there is a performance problem on a filesystem or if I want to investigate a specific logical volume, using
Symmetrix Manager I can drill down to discover, for example, on which hdisk the filesystem is allocated (1-
2).
Once we have found the hdisk, I can map it to the physical disks it resides on (2). I gather info on target and
LUN ID, the SDA unit serial number, its channel adapter to which the server is connected to, etc…

At this point it's clear that I can have all the unique information regarding the internal and external physical
configuration.

The following charts show the exact sequence I get when operating with Symmetrix Manager.

CMG-Italia & EuroCMG 2002

22

(1)

(2)

We could go deeper and find out the other internal info; in this example we can see that the selected hdisk is
allocated over an 8 members metavolume, the hdisk is shared between two channel interfaces (SA-13B and
SA 4A). Moreover on the same physical disk there are other Symmetrix device (10C, 11C, 109, etc…)

CMG-Italia & EuroCMG 2002

23

which are allocated to other hdisks and therefore to filesystems sharing the same physical disk (3-4). In case
of performance degradation it is easy to find out potential bottlenecks.

(3)

(4)

CMG-Italia & EuroCMG 2002

24

(5)

I can also monitor the read/write ratio, the average I/O size, the total throughput, etc… (chart 5)

If predefined alert thresholds are reached then specific actions can be taken from the optional exiting
frameworks like Tivoli, Unicenter, etc....

The following chart (6) displays online monitoring of the cache hit ratios, the read/write ratios and the I/O
rate.

CMG-Italia & EuroCMG 2002

25

(6)

CMG-Italia & EuroCMG 2002

26

9.3 Workload Analyzer

In the example below we are monitoring the % utilization of all channels from ESIX49 server to Symmetrix
SDA. As you can see the utilization values are far below (5%) any alert threshold (suggested values 40-
50%). This graph can be useful for capacity plan activity when dimension the number of paths a server
needs to access disks.

In the example below we are monitoring the total I/O per sec and reads and writes flow through DIR 13B
Symmetrix channel interface. From this graph we can understand the workload which is generated on this
interface. In the next graph we can go deeper to the single logical volume.

CMG-Italia & EuroCMG 2002

27

In the example below we are monitoring the total I/O per sec and reads and writes of raw device hdisk39
configured on Symmetrix device 0FC.

The specific file system is mounted on this raw device.
All those values can be useful when we need info such read/write ratios, or total I/Os over a specific hdisk
(or filesystem)

CMG-Italia & EuroCMG 2002

28

This window shows the % hit in cache, the % read hits and the total I/Os during a specified day interval time
for Symmetrix Device 0FC volume accessed through Symmetrix channel interface SA 13B from server
esix49. Having these info make easy to understand if the workload is cache friendly or unfriendly and
therefore we can easily estimate the workload over the backend.

